
 Customizing Software Development Methods: A Process Model

Approach
Judith Barrios A1, Jonás Montilva C1

ijudith@ula.ve, jmontilva@gmail.com

1 Department of Computer Science, University of Los Andes, Mérida, Venezuela

Abstract: This article presents an instantiation process model for facilitating the understanding and customization activities
of software development methods. The process accepts as an input a method represented by a process model which
prescribes the set of software development activities. A method is also defined by a product model that prescribes the set
of product parts that can be built by following the process model and, a team model that prescribes the set of roles needed
for executing the activities proposes in the process model. The proposal integrates the teaching, practical and consulting
experience of the authors, which is essential to understand and handle usual difficulties found during the process of adapting
software development methods. The main contribution of our proposal is to provide students of systems and software
engineering with a global vision of a method and the savoir-faire implicit in its process model description. Therefore, the
proposal simplifies users understanding of method background concepts, and guides them whereas customizing it
according to a particular software project context. The proposal is illustrated by an example of the White_Watch method
customization to cope with a hypothetical software project situation.

Keywords: Software Methods; Instantiation Process; Method Customization; Teaching Practice

1. INTRODUCTION

Software development methods (SDM) intend to assist project
leaders and the whole development team along a development
project. A SDM is typically used as a guide to establish main
activities as well as technical products that the project team
needs to complete to produce a software application.
Nevertheless, while following the prescribed guidelines of a
method, the project leader -software engineer- has to take
instant decisions about the project plan workflow by
considering, among other variables, the software product
complexity and characteristics, the specific product dynamic
requirements, the set of restrictions and needs coming from the
current working environment including team size and
experience, the developing tools capacities and the essentials of
the programming languages, project schedule, and user
participation.

In general, a SDM needs some adjustments before being used
as a development guide. These adjustments serve to define the
project’s preliminary schedule and to organize the work that the
team must do. Nevertheless, there are still some eventual
context factors that may disturb project workflow like
technological infrastructure, financial, and human resources
complications. A project leader, therefore, needs to frequently
adapt the method development process workflow. This problem
of tuning a method gets bigger if the project leader/software
engineer´s background in method understanding and practice is
not deep enough. This is the main problem encountered during
teaching activities as students begin to understand a method
when they must already adapt it to solve a concrete problem.
The main motivation of this proposal is, therefore, to assist
students to customize a method that they do not completely
understand. For that reason, this method instantiation process
can be assumed as a teaching practice because it is effective for
introducing systems and software engineering students into the
context of understanding methods and then adapting them

properly. Nevertheless, the proposition may also help software
and systems professionals to understand and customize methods
and other methodological guidelines.

The process of fine-tuning or customizing a method is called an
Instantiation Process (IP). Generally, an instantiation process is
done over the set of general concepts prescribed by a method
model or just by a broad methodological textual description –
tables or a set of steps or phases. A general method model is
prescribed, at a high abstraction level, by a comprehensive set
of concepts and their relationships which are involved in the
process of developing a particular product or service [1].

In this article, we propose an instantiation process (IP) model
for properly guiding the customization of a SDM. It means that
the IP accepts a SDM represented by at least a process model,
which is one of the three formal method description models. The
other two are the product model which prescribes the set of
product parts that can be built by following method process
guidelines, and the team model which prescribes the set of roles
and responsibilities that developers need to take for executing
the activities prescribed as process guidelines [1], [2]. This is a
generic proposition; thus, it can also be instantiated to couple
with methods that only have one or two of the method models
mentioned. The instantiation process model is illustrated with
the customization of a SDM example that describes how to
adapt the method for fitting a particular project situation of a
hypothetical example.

The proposal integrates the teaching, practical and consulting
experience of the authors as the basis of a good understanding
of the problems faced by students and professionals during the
adaptation of methods. The feedback gained from teaching
system engineering students to customize methods to a specific
software project and product factors has been essential. The IP
model proposal is completed by ways of working derived from

Décima Conferencia Nacional de Computación, Informática y Sistemas / CoNCISa 2024 / ISBN: 978-980-7683-08-1
Universidad Central de Venezuela, Caracas, Venezuela - 18 al 20 de noviembre de 2024

17

specific methods adaptations and characterizations completed
in many Venezuelan software organizations.

The main contribution of our proposal is to help systems and
software engineering students with method understanding and
its customization; especially, the concerns related to a software
development method adaptation for satisfying specific project
needs. In addition, and considering that the SDM already
customized may be applied over and over in similar project
contexts, students can enhance their ways of working which are
perceived as the enhancement of the quality of their
development processes as well as that of the software products
or services elaborated.

The article is structured as follows: the next section presents the
problem of customizing SDM along with the review of some
related works. Section 3 presents a summary of method
engineering and business process model background concepts.
Section 4 describes, at two levels of detail, the instantiation
process model proposed; first, a general contextual level and
then, the corresponding detailed workflow level for describing
the main activities included in the general process model.
Section 5 shows how to apply the proposed process by
instantiating the White_Watch method in a hypothetical
software project situation. Section 6 concludes the paper and
gives some practical recommendations to take advantage of the
use of the instantiation process model proposed.

2. PROBLEM AND RELATED WORK

2.1 Interpretations of the Problem

The problem of adapting methods is not new, and it is,
generally, neglected by software organizations and project
leaders since they prefer to solve method adapting problems
incidentally [3]. Nevertheless, in preventing to take rush
decisions related to tailoring the SDM throughout the execution
of a development project, many software organizations define
and institutionalize their own development methods to swift
project performance and to adequately assure that a high-quality
development process shall produce a high-quality software
product. But the problem of adapting methods still causes
difficulties that disturb project plan work breakdown structure,
timelines, costs, and final product or service quality.

The software engineering community early began to work on
method selection and its adapting problem. For instance, at the
beginning it was identified as a problem of programmers and
the knowledge they had of the development cycle along with
their capacities to define what to do, when to do it, and how
much effort they needed to complete a prescribed task; so, they
could organize their work and, consequently, help project
leaders to estimate the required work of the whole team. These
were the personal software process model (PSP) and TSP [4],
[5]. Afterward, the SEI proposal of the CMMI model expected
to help organizations and software engineers to understand the
whole software development process and, organize team
development work by approving a predefined set of business
development processes. Accordingly, an organization defines
the complete set of software processes that ought to be installed,
executed, measured, and monitored to improve organizational
performance as well as the corresponding quality of the
production process and its products and services [6].

Nevertheless, another customizing problem emerges when a
software organization defines or selects, as mandatory, a
particular SDM or decides to define and install a set of
organizational software processes for elaborating and managing
demanded software products. That is, the project leader and the
work team must plan and execute each one of the prescribed
activities to produce each prescribed technical and management
product or document for realizing later, at the end of a project,
that some of these activities were not useful because they do not
positively contribute to obtaining the final product or service
and its documentation, as required by the client. In consequence,
there are a lot of time and effort lost, many expenses, and any
added value either for the client or for the software organization
itself. Many related proposals for software processes
assessment and improvement searched to enhance and elevate
installed software process performance and quality like
SCAMPI, SPICE, ISO 9000 [7], [13].

Some other propositions tackled the problem of adapting and
defining the required product development activities by
assembling a set of generic ones with or without modifications.
This kind of solution was triggered by, among main issues, the
software development cycle, the product type, the project
management schedules according to pertinent project
situational or practical variants, etc. The WATCH suite of
methods is a good example of this kind of method proposal [8],
[9] as well as the Crystal method family [10]. These
propositions preconize a set of guidelines arranged to manage
some of the method adapting problems; as a result, a set of
method variants is obtained where they can be selected
according to the predefined set of project and product features.
Other approaches extend generic activities with practical
strategies like RUP (Rational Unified Process) and its agile
version RUP agile [11], the ASD (Adaptive Software
Development) that repeat iteratively an adapted development
cycle as a practical strategy to accomplish software product
dynamic or uncompleted requirements [12], [13]; and, the
SCRUM project management practical approach that has been
used as an agile way for organizing the development work for
speedy build functional software products [14].

The SEMAT approach extends the range of the approaches
reviewed. The OMG Essence standard has been published as the
kernel for software engineering methods. It recommends and
organizes, in a generic model, a reduced set of essential
elements or concepts which are associated with any software
production process. This model may well be applied by the
development team to define the practical work to be done along
with the things to be produced and manipulated in a particular
development project [15]. There are many related works where
practitioners apply and extend the essentials to cope with
development process issues. [16], [17], [18].

Lastly, we add to this variety of methodological research works
and practical approaches, the huge number of specialized SDM
that have been proposed to help, assist, and guide the
development process according to, among other settings:

 the type of product and its complexity,

 the team size, and its experience,

 the tools available and their capacity,

 the time to have a functional version,

CoNCISa 2024 - Sesión de Artículos Largos
Customizing Software Development Methods: A Process Model Approach

18

 the dynamic change of product requirements, and

 the development technology available.

Some of these propositions recommend their method by
including a list of product characteristics, time to have a
functional product, team size, and project typical situations
where their methods have proved to be effective [19], [20], [21],
[22]. The work presented in [23] addresses the methods
configuration problem but only for the agile development
approach.

None of these methodological propositions and strategies
explicitly include a user guide, method use guidelines, or a set
of tips to better adjust or customize their proposals. Knowledge
level and understanding of a SDM or approach as well as
sufficient software development experience seem to play a
relevant role in the selection and, subsequently, customization
of a SDM to fit the project and contextual factors. The literature
review presented in [24] discusses the types of reasons behind
software engineers' decisions to select and use software
development methods – adoption of methods. It includes
discussion about method deviations and method
operationalization problems where a solid understanding of
SDM background concepts along with the awareness of why
and how to implement some of the method activities, seems to
be a significant factor to avoid method misconception, and
consequently, its misalignment to software project intentions.

We also found that many of these methodological and
strategical offers are supported by social network broadcasts
and an experienced set of users, programmers, and developers
who communicate their practices and recommend effective
ways of working like [25] and [26].

2.2 The Problem from Teaching Experience Perspective

To complete the description of the problem, we take some
examples from our teaching experience in systems and software
engineering. For instance, while working on class projects with
our students, we notice that central difficulties of method usage
were related to the know-how to apply a method. That is, first,
students exposed problems to select, and then, how to execute a
prescribed guideline/activity or to choose one of them instead
of another among the set of the proposed ones. It is not easy for
the students to discern if a particular action is necessary (ought
to do it), if it is optional or not required considering the type of
product/service or the development tool available, or a
particular management exigence of the client/teacher; similar
difficulty with an earlier configuration of technical products
parts that are needed to complete the final software product or
service. A concern case is when a student or a project course
team decides to follow each one of the prescribed guidelines to
produce each one of the prescribed products parts or documents
(“because the method is explicit so we have to do it”) for
realizing later, at the end of the project, that a lot of the diagrams
or executed actions were not necessary because they were
redundant or do not contribute at all to the final product/service
required.

As observed, the problem of customizing a SDM disrupts
software engineering work from many perspectives. It is an
individual problem, a team problem, a project leader problem,

1 After applying several times some others associated learning strategies

and a business process problem. We may conclude that it is not
a method adapting problem but a process domain knowledge
problem or a deficient practical experience. It may be true but
not completely because the process of learning requires a well-
founded background to have an understanding and a
comprehensive picture of a method before applying it.

That is one of the reasons why this method instantiation process
model was shaped: to assist method understanding and
comprehension before instantiating it. From the business
process perspective, this problem needs to be solved at the
institutional level by defining and installing the required and
flexible set of software processes by using a specific process
improvement approach or standard as mentioned earlier in this
section, but this discussion is out of the scope of this proposal.

We are convinced1 that a generic instantiation process model,
like our proposal, may contribute to facilitate the software
engineering task of adjusting a SDM to project context
situations, product/service characteristics, and team size and
experience issues. It means that before starting a development
project, the student, the project leader, or the system/software
engineer in charge, may analyze and take decisions about the
final product or service, its product parts, and documents that
must be produced; besides, what would be the workflow that
best fit project context situation and team members’ knowledge,
skills, experiences, and competencies. Method instantiation
process model guidelines assist not only to adjust a method to a
particular scenario but to understand what is prescribed by the
method before adapting it. This premise persists and is
independent of the SDM approach, i.e., if it is disciplined,
balanced, or agile.

3. BACKGROUND CONCEPTS

Software methods are formally defined as a set of cohesive and
complementary models that represent the software final product
and its partial components, the software process/activities which
need to be executed to produce each part or component of the
product/service, and the competencies and understanding that
each member of the software team must attest to, adequately,
execute each prescribed activity, and assure that the product part
elaborated has the expected quality. These models are the
product model, the process model, and the team model,
respectively [1], [2].

The process of fine-tuning or customizing a method is called an
instantiation process (IP). Generally, this kind of process is done
over a set of generic concepts prescribed by a method model.
This method model is general and is placed at a high abstraction
level. It means that a software development model prescribes
the complete set of concepts and their relationships which are
involved in the method development process of a software
product/service. Some of them may as well include the roles that
the members of a software team have to play throughout a
development project.

The process of instantiating a method implies the selection,
extension, reduction, or modification of any of the concepts
included in the general model. In the case of a SDM represented
by a process model, a product model, and a team model, the
instantiation process ought to be done coherently and

Décima Conferencia Nacional de Computación, Informática y Sistemas / CoNCISa 2024 / ISBN: 978-980-7683-08-1
Universidad Central de Venezuela, Caracas, Venezuela - 18 al 20 de noviembre de 2024

19

consistently over each one of the generic models so the
relationships and dependencies between concepts and models
may be correctly kept. After an instantiation process, the
customized method model has a step lower abstraction level
than the general one.

Figure 1 shows the links between the generic method model and
the customized model obtained after an instantiation process.

Figure 1: Links between Generic and Instantiated Method Models

A method product model represents the set of product parts and
the relationships among them which can be elaborated by
applying a particular method process guideline. In the case of a
SDM, a method model must include the set of partial technical
and management product parts as well as the deliverable ones.
Figures 2, 3, and 4 present at a very high abstraction level a set
of generic method concepts that may be instantiated to build a
particular SDM product model. These concepts can be
instantiated to fit specific method requirements [8], [9].

Figure 2: Generic Product Model Concepts. Adapted from [8]

Figure 3: Generic Process Model Concepts. Adapted from [8]

Figure 4: Generic Team Model Concepts. Adapted from [8]

As model concepts are represented at a high abstraction level,
they could be chosen and extended for being part of a particular
SDM. These meta-models were used to elaborate the Blue,
Yellow, and White variants of the WATCH method suite [9].

Figure 5: Workflow of the White_Watch Method [27]

Figure 5 presents an example of the results of the instantiation
process of the workflow of the White_Watch method [27]. This
version of the WATCH suite was defined for assisting software
engineering students in their course projects. Notice that
product and process generic concepts (Figures 2 and 3) were
extended to have a more specific description of the technical
products and their corresponding building processes. In this
case, a software product is built as an assembled set of reused
software components. The intermediate technical products of
Figure 2 were extended with a business system model,
documents for expressing software requirements, architecture,
and testing descriptions. These technical products are
represented by using explicit software engineering techniques
and UML diagrams where correspond.

3.1 Process Model

The IP model proposed is graphically represented by a business
process model using the UML Business notation [28].
Accordingly, a business process explicitly has a process goal to
aim, is executed and supervised by actors (and their roles), has
a set of inputs that may be transformed into outputs, generates
other outputs, and is regulated by some precise procedures,
standards, and rules, and is supported by some business
resources (technology, money, documents, etc.). A business
process may be complex or simple so it can be decomposed and
detailed (into activities and tasks) according to modeling
description requirements. A graphical representation like
business process models is easy to understand and follow and
provides students and engineers with a complete perspective of

Generic abstraction level

Lower abstraction level

«Model»

Method Product

Model

«Model»

Method Process

Model

«Model»

Method Team Model

«Model»

Customized

Method Process

Model

«Model»

Customized

Method Product

Model

«Model»

Customized

MethodTeam

Model

«instanceOf» «instanceOf» «instanceOf»

«metaclass»

Method Product

«metaclass»

Method

intermediate

product part

«metaclass»

Method product

deliverable

«metaclass»

Technical

product part

«metaclass»

Project

management

product part

«metaclass»

Support product

part

«metaclass»

Method final

product

*

«metaclass»

Method Process

«metaclass»

Development

process

«metaclass»

Support process

«metaclass»

Project

management

process

«metaclass»

Method Product

«metaclass»

Activity

«metaclass»

Method Actor

0..*
*

produce* *executed by

«metaclass»

Method Actor

«metaclass»

Team

«metaclass»

Stakeholder

«metaclass»

Developer

«metaclass»

Role

«metaclass»

Client

«metaclass»

Project Leader

«metaclass»

Usuario

1..*

*

Business

Modelling

Requirements

Engineering

Software

Design

Provisioning

of Software

Components

Software

System

Integration

Software

System

Testing

Software

System

Delivery

Software Project Management

Start
Stop

Business

application?

Software

Requirement

Description A

Software

Architecture

Description A

Software

Components Test

Description A

Business

System Model A

«Software ...

Software

System

yes

CoNCISa 2024 - Sesión de Artículos Largos
Customizing Software Development Methods: A Process Model Approach

20

what they must do for customizing a software development
method [29] and [30].

For that reason, the IP model is represented by a general process
description diagram and a process decomposition diagram that
shows the set of four sub-processes of the general process. Each
one of the sub-processes is detailed by using a UML activity
diagram.

4. THE INSTANTIATION PROCESS MODEL

As we explained earlier, an instantiation process implies the
selection, extension, reduction, or modification of any method
element included in the general method model. This
instantiation aims to generate a particular version of the method.
Besides, in the case of a SDM represented by a process model,
a product model, and a team model, the instantiation process
ought to be done coherently and consistently over each one of
the general models so the relationships and dependencies
between concepts and models can be respected.

According to the research works [8] and [9], method guidelines
suggest starting the instantiation process by first customizing
the method product model determining what is going to be
produced by the adapted method; then, the selection of the
process model elements that describe what must be done to
produce the product model elements already selected. The
instantiation process ends by defining the actors and their roles
that are required for executing those processes/activities
expressed by the process model already instantiated. Afterward,
a validation process is necessary to assure that the resulting
method models are coherent among them. According to these
process model guidelines, the student/project leader has by now
shaped a set of method models to a particular software project
scenario.

Figures 6 shows the Instantiation Process description by using a
general-level UML Business diagram [28].

Figure 6: General Description Diagram for the Instantiation Process

(IP)

As described in the previous diagram, the IP is modeled as a
business process whose main goal is “to adapt method models
according to project and product situational factors”. The IP
process accepts general Method Models (Product, Process, and
Team) and after processes guidelines, it produces the set of
corresponding customized method models. The process is under

the responsibility of the project leader (actor) and it may be
supervised by a software engineer. There are some rules,
standards, and restrictions related to method application,
organizational or business domain, and other method features
that must be considered while customizing method models.
Project documents and other items like initial product
requirements, organizational context, and some relevant
technological parameters support decisions related to the
selection of model elements. Similarly, if there are any required
addition or modification to complete general method model
customization.

Considering that the IP is a complex process it has been
decomposed into four sub-processes as represented in Figure 7.

Figure 7: Sub-processes that Compose the IP

To precisely prescribe IP model guidelines, the detailed
workflow for each one of the four sub-processes depicted in
Figure 7 is presented in Figures 8, 9, 10, and 11, respectively.

According to Figure 8, for customizing a method product
model, it is necessary to analyze the initial software product
requirements document as well as consider project contextual
and technological aspects that may influence the selection and
characterization of a set of product parts to be produced as
represented in the workflow of the figure. It may be necessary
to add or modify by extension or reduction one or more product
parts of the customized product model. The IP of the method
product model ends after a well-structured validation of the
whole set of method product elements.

Figure 8: Product Model Instantiation

Once the method product model is customized, the IP continues
with the method process model to select the required set of
processes/activities that are required for building each one of the
product model elements included in the customized product
model. If there are some new product parts or some of them
have been modified, the corresponding set of method process
model elements should be defined or redefined as appropriate.
It is possible that the general method process model does not
have all the prescribed processes, i.e., maybe it just prescribes

Method
Instantiation

Process

«Model»

Customized

Method Process

Model

«Model»

Customized

MethodTeam

Model

«Goal»

To adapt method models

according project and

product situational factors

Product Initial

Requirements, Project

Description and other

relevants documents

«Actor»

Project Leader

«Rule»

Standards & Organisational

Procedures, Project

Restrictions, Plans...
«Actor»

SW

Engineer/Project

Lider

«Model»

Customized

Method Product

Model

«Model»

Method Product

Model

«Model»

Method Team

Model

«Model»

Method Process

Model «executes»

«supervises»

«support»

«limit» «attains»

Product Model

Instantiation

Team Model

Instantiation

Process Model

Instantiation

Method

Instantiation

Process

Validation of

Method Models

Instantiation

Product Model Instantiation

Analyze SW

Product

Requirements

Select Product

Model Elements

Characterize

product

elementsStart

Product Initial

Requirements, Project

Description and other

relevants documents

stop

«Model»

Customized Method

Product Model

«Model»

Method Product Model

Validate

selected set of

product model

concepts

need to modify

or add

Add a new

sotware

product part

Modify a

software

product part

«Rule»

Standards & Organisational

Procedures, Project

Restrictions, Plans...

No

Décima Conferencia Nacional de Computación, Informática y Sistemas / CoNCISa 2024 / ISBN: 978-980-7683-08-1
Universidad Central de Venezuela, Caracas, Venezuela - 18 al 20 de noviembre de 2024

21

the development processes but no the support or the project
management processes. Therefore, the IP is done only on the
available process model elements as represented in the activity
diagram of Figure 9. It is important to have in mind that any
modification to current method models must be properly
described by using the same formality and/or notation that in the
SDM general model.

Figure 9: Process Model Instantiation

If a method team model exists in the general SDM models, it is
instantiated by using as inputs the already customized method
process model. This process consists of identifying and
characterizing actors, roles, and responsibilities required for the
execution of processes/activities included in the method process
customized model as it is represented in Figure 10.

Figure 10: Team Model Instantiation

Finally, a global validation process is done to assure that the set
of customized models is coherent and consistent with what is
expressed in the SDM general models, and with the project and
technological factors delimited by the official project
documents, procedures, rules, and restrictions (see Figure 11).
For example, in a SDM expressed by the three method models,
the process model must use, produce, or complete a product part
included in the product model. In the same way, each element
included in the process model must be described or assigned as
a responsibility of an actor´s role from the team model.

As we mentioned, the proposal is a generic process model, thus
it is adjusted to different kinds of method descriptions and
formalities. As mentioned before, the proposed IP requires, as
input, at least a process model. Most methodological
descriptions are represented textually through tables or as a list
of steps or phases. This type of representation express activities
that are performed to produce a software product (partial or
complete). Therefore, the product model is implicitly included
in such activities; it is the task of the project leader to extract the
products involved, and to determine what part of the product

they may represent and whether or not they form part of the
deliverable product. The general IP workflow is showed in
Figure 12.

Figure 11: Validation of the Customized Set of Method Models

Figure 12: Instantiation Process General Workflow

5. APPLYING THE INSTANTIATION PROCESS MODEL

To illustrate the benefits of our proposal, we present the
customization of the White_Watch method [27] for a
hypothetical course project where the students work in a team
of two software engineers.

5.1 Hypothetical Project Description

The first part of a software engineering course project consists
in detailing the set of business processes involved in an online
booking system for a small theater. These processes are part of
the organizational or business system model of the small
theater; thus, it is necessary to define what are the activities,
actors, events, resources and objects involved in the process of
booking seats in the plays offered.

5.2 IP Workflow for Adapting the White_Watch Method

The White_Watch method workflow showed in Figure 5 is
detailed through a descriptive table that organize those
processes into steps. Each step has a set of prescribed activities
along with the set of techniques or notations suggested to
elaborate the involved products. In view of that, students should
adapt the method from the table description which has four
columns: method steps, activities, notations/techniques and
products. Table I shows the Business System modeling step of
the White_Watch method.

Initially, it is important to state that, according to Figure 6, both
students, alternatively, ought to play the role of project leader
during the personalization of the process prescribed in the IP
model.

Process Model Instantiation

Select the required

set of technical

processes/activities

required

Detail selected set

of

processes/activities

Select the required

set of project

management

processes/activities

Select the required

set of support

processes/activities

Start

Validate

adapted process

model

Stop

«Model»

Customized

Method Process

Model

Product Initial

Requirements, Project

Description and other

relevants documents

«Model»

Method Process

Model

Add new process

(es)/activity(ies)

Modify selected set

of process

(es)/activity(ies)

need to

modify

or add?

«Model»

Customized

Method Product

Model

«Rule»

Standards &

Organisational

Procedures, Project

Restrictions, Plans...

no

Team Model Instantiation

Identify roles

and actors

required

Determine

actor`s profile

Establish team

structure

Start
Stop

Describe actors̀

roles and

responsibilities

«Model»

Customized

MethodTeam

Model

Product Initial

Requirements, Project

Description and other

relevants documents

«Model»

Method Team

Model

«Model»

Customized

Method Process

Model

«Rule»

Standards & Organisational

Procedures, Project

Restrictions, Plans...

Validate the

selectes team

model elements

Validation of Method Models instantiation

Assure consistence

between models

Certify correctness of

links between actors,

process and productsStart

Stop

«Model»

Customized Method

Product Model

«Model»

Customized Method

Process Model

«Model»

Customized

MethodTeam Model

Assure adequation

level of customized

SDM models

Product Initial

Requirements, Project

Description and other

relevants documents

«Rule»

Standards & Organisational

Procedures, Project

Restrictions, Plans...

Process

Model

Instantiation

Product

Model

Instantiation

Team

Model

Instantiation

Validation

of Method

Models

Instantiation
Start

Instantiation

process

Stop IP

all available

method models

have been

instantiated?

NO

CoNCISa 2024 - Sesión de Artículos Largos
Customizing Software Development Methods: A Process Model Approach

22

Table I: Excerpt of White_Watch Method Model [27]

Steps Activities Notations/techniques Products

Business

System (BS)

Modeling

-Modeling BS

value chain (if

needed)

-Modeling

fundamental

processes

-Modeling

Support

processes

-Modeling

process ́

activities

-Interview with BS

and domain experts

-Direct observation of

BS context

-Review of technical

documentation

-UML Business value

chain diagram

-UML Business

process description

diagram

-UML activity

diagram

-Value Chain

-Hierarchy of

processes

-Descriptions of

Processes

-Diagrams of

activities

The relationship between product and process models is explicit
and direct. Students have to select and instantiate those
products, steps, and activities considering the above-mentioned
course project requirements; and then they can select the
suggested technique or notation to produce them. IP guidelines
suggest to start the instantiation process by the product model,
then the process model, and finally, if required, the team model.

Table II: White_Watch Method Model Customized for the Example

Steps Activities Notations/techniques Products

Business

System (BS)

Modeling

-Modeling

fundamental

processes

-Modeling

process ́

activities

-Direct observation of

BS context

-UML Business

process description

diagram

-UML activity

diagram

-Descriptions of

Processes

-Diagrams of

activities

The outcome of the IP execution should be:

 Product model required (from Table I column “products”):
one or more business processes descriptions and the
corresponding set of activity diagrams.

 Process Model instantiation (Table I column “activities”):
modeling fundamental processes (for the booking process)
and modeling process activities (for detailing the booking
process). These activities should be performed by applying
techniques and notations selected from the " Notations/
Techniques" column. In that case, after direct observation
of the business context, it is necessary to represent
perceived processes and activities by using UML business
process description diagrams and UML activity diagrams.

 The adaptation of the Team Model seeks to define the roles
that each of the two students has to play to execute the
process model already instantiated. The actor roles
prescribed by the method are “project leader”, “analyst”,
“designer”, “programmer” and “tester”. In this case and as
part of the teaching strategy, both students must play the
role of analyst at some point in the modeling process.

Table II presents the customization of the White_Watch method
after applying the IP to the example introduced above.

6. CONCLUSIONS

Throughout this article we presented an IP model as a teaching
strategy to help students while personalizing a method they do

not fully understand. The proposed model provides students
with a more complete view of the components of the method
and their dependency relationships, which are essential to adapt
a method to the situation of a particular project. In fact, it allows
to better apprehend what is the purpose of a method and how it
is structured, the kind of product that can be built through the
execution of a pertinent set of processes and activities, and to
detect what are the competencies that developers need to have
to properly implement prescribed activities.

As explained, the problem of adapting methods has many
relative solutions; some of them are oriented to the
implementation of method variants that partially solve the
problem of choosing a suitable SDM according to some
predefined factors. Others, characterize the methods according
to their development approach to then suggest how to select a
method from the collection. Our proposal is generic and is based
on method engineering concepts so it can be adjusted to
different types of method descriptions and formalities,
independently of any approach, paradigm and type of method.
For instance, it equally works for disciplined, balanced or agile
development methods.

This proposal has proven to be an effective teaching practice for
introducing system and software engineering students into the
conceptual context of the development methods and their
adaptation. The IP model may also assist systems professionals
to understand and customize other methods and methodological
guidelines than SDM.

REFERENCES

[1] S. Brinkkemper, “Method Engineering: Engineering of Information
Systems Development Methods and Tools”. Information and Software
Technology, 38, 275—280, 1996.

[2] J.J. Odell, “A Primer to Method Engineering”. INFOSYS: The electronic
newsletter for information systems. 3 (19), 1996.

[3] D. Rivero, J. Montilva, J. Barrios and M. Murúa, “Un Análisis del
Desarrollo de Software en Empresas Venezolanas”. Seventh LACCEI
Latin American and Caribbean Conference for Engineering and
Technology- LACCEI’2009. San Cristobal, Venezuela, pp. WE1: 1-10,
2009.

[4] W. Humphrey, “Introduction to the Personal Software Process”,
Addison-Wesley, 1997

[5] W. Humphrey, “Introduction to the Team Software Process”, Addison-
Wesley, 2000

[6] SEI “CMMI for Development, Version 1.3”. Software Engineering
Institute. Carnegie Mellon University, USA, Technical Report
No.CMU/SEI-2010-TR-033, 2010.

[7] M. de la Villa, M. Ruiz and I. Ramos, “Un Estudio Crítico Comparativo
de ISO 9001, CMMI e ISO 15504”. CISTI 2006 ISBN: 978-989-20-0271-
2 Volume II, pp. 551-551551. 2006. https://www.researchgate.net/
publication/235661307

[8] J. Barrios, J. Montilva and D. Rivero, “The WATCH Method Suite in
Practice: Two Complementary Perspectives of Use”. Conference CLEI
2011. Quito Ecuador. Octubre, 2011.

[9] J. Barrios y J. Montilva, “Watch: A Suite of Methods for Facilitating
Software Development Process Adaptability,” in Software Engineering:
Methods, Modeling, and Teaching. Sello Editorial Universidad de
Medellin. Colombia, 2011.

[10] A. Cockburn, “Crystal Clear”, Addison-Wesley, 2005.

[11] S. Ambler, “The Agile Unified Process (AUP)”, 2006. http://www.
ambysoft.com/unifiedprocess/agileUP.html

[12] J. Highsmith, “Adaptive Software Development: An Evolutionary
Approach to Managing Complex Systems”, Dorset House Publishing,
2000.

Décima Conferencia Nacional de Computación, Informática y Sistemas / CoNCISa 2024 / ISBN: 978-980-7683-08-1
Universidad Central de Venezuela, Caracas, Venezuela - 18 al 20 de noviembre de 2024

23

[13] R. Pressman, “Software Engineering a Practitioner’s Approach”.
Seventh Ed. by The McGraw-Hill Companies, Inc, 2010.

[14] K. Schwaber and J. Sutherland, “The Scrum Guide - The Definitive Guide
to Scrum: The Rules of the Game”. Scrum.org. October, 2017.
https://www.scrumalliance.org/learn-about-scrum/the-scrum-guide

[15] I. Jacobson, Ng Pan-Wei, P. McMahon, I. Spence, and S. Lidman, “The
Essence of Software Engineering: The SEMAT Kernel”. Communications
of the ACM, 2012, vol. 55, no. 12, December, pp. 42-49.

[16] Essence Kernel and Language for Software Engineering Methods
Version 1.0, Nov. 2014. http://www.omg.org/spec/Essence/1.0/

[17] V. Savić, E. Varga, “Extending the SEMAT Kernel with the TDD practice
- IET Software - Wiley Online Library, 2018 https://doi.org/10.1049/iet-
sen.2016.0305

[18] J. S. Park, “Essence-Based, Goal-Driven Adaptive Software
Engineering,” IEEE/ACM 4th SEMAT Workshop on a General Theory
of Software Engineering, 2015, pp. 33-38, DOI: 10.1109/GTSE.2015.12

[19] J. Montilva and J. Barrios, “Ingeniería del Software: Un enfoque basado
en procesos”. Sello Editorial del Vicerrectorado Académico, Universidad
de los Andes, Venezuela. August, 2021. Published by Amazon Books.
Available: https://www.amazon.com/-/es/Jon%C3%A1s-Montilva-
C/dp/9801120290

[20] J. Barrios and J. Montilva, “A Balanced and Adaptable Method for
Software Development in very Small Enterprises: The Blue Watch
Variant”. In Carlos M. Zapata, et al (eds), Software Engineering:
Methods, Modeling and Teaching: 39-54. Medellin: Sello Editorial.
2011.

[21] J. Barrios and J. Montilva, “Gestión Ágil de Proyectos a través de la
Integración de Blue-WATCH y SCRUM”. X Ibero-American Conference
on Software Engineering and Knowledge Engineering – JIISIC 2013.
University of Medellín. Medellín, Colombia. November, 2013.

[22] M. A. Khan, A. Parveen and M. Sadiq, “A Method for the Selection of
Software Development Life Cycle Models Using Analytic Hierarchy
Process,” International Conference on Issues and Challenges in
Intelligent Computing Techniques (ICICT), 2014, pp. 534-540, doi:
10.1109/ICICICT.2014.6781338.

[23] D. Gupta and R. Dwivedi, “Configurable Method Model of Agile
Methods for Creating Project-Specific Methods”. Int'l Conf. Software
Eng. Research and Practice, SERP'16. ISBN: 1-60132-446-4, CSREA
Press. 2016

[24] T. Havstorm, F. Karlsson. “Software Developers Reasoning Behind
Adoption and Use of Software Development Methods – A Sytematic
Literature Review”, in International Journal of Information Systems and
Project Management. Vol 11, No. 2, Article 4, 2023. https://aisel.aisnet.
org/ijispm/vol11/iss2/4

[25] Toptal Engineering Blog. https://www.toptal.com/developers/blog

[26] SoVisionIT. Software and APP Development. https://www.sovisionit.
com/software-app-development/interesting-stuff/blog/

[27] J. Barrios and J. Montilva, “Método W_Watch”. Revised version 2020.
Internal Report, Group GIDyC. School of Systems Engineering.
University of Los Andes. Mérida, Venezuela. 2020. Partially published
in J. Montilva & J. Barrios [21].

[28] H.E. Eriksson and M. Penker, “Business Modeling with UML: Business
Patterns at Work”. John Wiley & Sons, 2000.

[29] K. Figl, “Comprehension of Procedural Visual Business Process Models:
A Literature Review”. Business and Information Systems Engineering
Vol 59(1), February 2017, 41–67.

[30] E. Kornyshova and J. Barrios, “Visual Representation of the TOGAF
Requirements Management Process”. ER Workshops 2225 October
2018. LNCS, volume 11158, pages 239-248.

CoNCISa 2024 - Sesión de Artículos Largos
Customizing Software Development Methods: A Process Model Approach

24

