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Abstract: Developing systems and methodologies capable of monitoring the condition and diagnosing multiple faults in 
industrial/manufacturing systems are topics of active and continuous research. In this paper, a fault diagnosis system 
inspired on the Probabilistic Boolean Networks (PBN) with Intervention model is suggested as a tool for diagnosing faults 
of a group of machines in a manufacturing process. The proposed approach considers the failure modes of the machines 
involved that are affecting the function and performance of the system. Firstly, the modes are identified and divided into 
two groups: faults and failures. The former implies detectable degradation of system function until the threshold for fault, 
which is eventual catastrophic loss of system, is surpassed. The latter leads to catastrophic fault. Then, using PBN, both 
classifications can be diagnosed and actions to mitigate them can be taken. The proposal also allows to forecast a time in 
hours by which the fault or failure will be imminent. The method herein discussed was applied to an ultrasound welding 
cycle, and a PBN with interventions model was created, simulated and verified through by means of model checking in 
PRISM. Results obtained show the validity of this methodology. 
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1. INTRODUCTION

For current industry to produce goods of the highest quality, 
while complying with environmental, safety and other 
regulations, the efficiency of its processes requires constant 
improvements. Any unscheduled stops in production and 
equipment faults impact negatively system availability, 
operational and environmental safety, and the productivity and 
profitability of the business. Proper operation of these systems 
involves compensating the effects disturbances and changes can 
have, and in order to assure continuous operation within 
performance specifications, faults have to be detected, isolated 
and eliminated, all of which are tasks related to Fault Detection 
and Isolation (FDI) [19]. FDI methods are mainly divided in two 
categories, which are model-based and process-history-based 
[39,41]. 

Model-based methods make use of either an analytical or 
computational model of the systems. A varied spectrum of the 
proposed model-based methods are supported by some basic 
concepts such as: the parity space, observer approach and the 
parameters identification or estimation approach [17,14,18]. 
The authors in [44] show that the observers and parity space 
methods do not always permit the isolation of actuator faults. 
For models that are non-linear in nature, the complexity on the 
observer design method increases, whereas an precise system 
model is needed for the parity space approach [44]. To 
overcome these problems a more recent approach based in the 
solution of an inverse problem using computational intelligence 
tools has been presented [1,6,7]. In general, the developed 
researches have been limited to the diagnosis of independently 
occurring faults. 

Diagnosing simultaneous faults is an area not sufficiently 
addressed in scientific literature. Multiple fault detection in 

dynamic systems can be challenging, because the effects of a 
fault may hide or be compensated with the effects of different 
type of fault, and because equal types of multiple faults can 
manifest themselves in different forms, considering their order 
of occurrence. The computational intelligence tools have been 
the most used to address this area [41,36,27]. In this sense, 
research has focused on static systems [36], solutions to the 
multiple faults problem through observations on imperfect tests 
as in [32], to determine the closest evolution relative to the state 
of the fault. The authors of [43] postulate an algorithm-based 
pattern recognition method for diagnostics, which resulted in 
high efficiency and precision, but with cases in experimental 
data where particular fault tests didn’t have a solution. Other 
developments include SLAT patterns for multiple fault 
diagnosis [5], and model-based methods for describing multiple 
faults in rotor systems [3]. However, multiple fault diagnosis is 
a current research area which demands the development of 
novel strategies for improving the performances of the fault 
diagnosis systems.  The principal objective of this paper is to 
present a new approach of multiple faults diagnosis in industrial 
systems by using Probabilistic Boolean Networks (PBN). 

Biomimetic methodologies are widely used in manufacturing 
for the solution of many complex problems. Qualitative 
frameworks, such as PBNs allow describing large biological 
networks without loss of important system properties, and 
allowing the representation of complex behavior, such as self-
organization. PBNs are used to model Gene Regulatory 
Networks (GRN); collections of DNA segments inside a cell 
that interact indirectly with other segments and substances in it 
to regulate/govern the expression level of genes. They are used 
to understand the general rules that govern gene regulation in 
genomic DNA. PBNs are transition systems that satisfy the 
Markov Property, (memoryless, not dependent on the history of 
the system). Proposed by I. Shmulevich [33] by extending 
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Kauffman’s Boolean Network (BN) concept [20,21], they 
combine the rule-based modelling of Boolean Networks with 
uncertainty principles. These Probabilistic Boolean Network 
consist of a series of constituent BNs that have assigned 
selection probabilities, where each BN may be considered a 
“context”. Data for each of the cells comes from dissimilar 
sources; where each represents a cell context. In each given 
point in time t, a system can be governed by one of these 
constituent BNs, and the system switches to another constituent 
BN at another time, with a given switching probability. Figure 
1 presents one of the constituent BNs of the Pick and Place 
PBN, keeping in mind that a PBN is a collection of BNs. 

 
Figure 1: Transition Diagram of one of the Constituent BNs of the 

Pick and Place PBN 

PBNs for manufacturing systems were introduced in Rivera 
Torres et al. [28] and further developed in [29-31]. In this 
article, the use of PBNs in manufacturing systems will be 
expanded to allow the consideration of faults that may lead to 
catastrophic failure, being this a first contribution of this 
research. The proposed model allows detection and 
classification of single and multiple faults which constitute 
another contribution of the proposal. It allows identification of 
fault states in which it is possible to continue operation, and 
those where it is not possible to continue (failure). It also allows 
to forecast a time in hours by which the fault or failure will be 
imminent. As a final contribution, the system provides 
information about the maximum probability of fault and failure 
occurrence, which allows better maintenance planning. This 
paper is organized in the following manner: Section 2 discusses 
Probabilistic Boolean Networks and their use in manufacturing 
systems modeling, Section 3 presents how these PBNs can be 
used for FDI in these systems. Section 4 discusses the 
experimental results. Finally, the conclusions of this research 
and future works are presented. 

2. PROBABILISTIC BOOLEAN NETWORKS IN MANUFACTURING 

SYSTEMS 

Boolean Networks (BN) [20,21] and Probabilistic Boolean 
Networks [32,33] have been proposed as a way of modeling 
manufacturing systems and process’ dynamics (validated 
through model checking), and predict their future behaviors 
with statistical analysis and discrete event simulation [28-31]. 
This use has been very well documented in literature, for 

modeling biological systems [2,4,8,13,16,38], and for modeling 
GRNs [9-11,15,22,38]. The mechanism of intervention [34] is 
used to steer the evolution of the network and guide it away 
from undesired states, such as those associated with disease. 
BNs are a finite set of Boolean variables (nodes), with states 
approximated to 0 or 1, for which, their state is determined by 
the current state of other nodes in the BN. It has a set of input 
nodes called regulatory nodes and a set of Boolean functions 
(predictors) that regulate the value of a target node. If the set of 
nodes and their corresponding functions is defined, the BN is 
defined. PBNs are basically a collection of BNs for which at any 
discrete time interval, the node state vector transitions are based 
on one of the rules of the constituent BNs. These context-
sensitive, dynamical and probabilistic BNs satisfy the Markov 
property. 

In [28], the authors demonstrated that PBNs are valid for 
modeling manufacturing systems, by establishing the method, 
validating it through model checking, and comparing the results 
obtained through simulation with actual machine data. In it, the 
authors demonstrated that PBNs are valid for modeling 
manufacturing systems, by establishing the method, validating 
it through model checking, and comparing the results obtained 
through simulation with actual machine data. In [29], the 
authors used the same methodology applied to a manufacturing 
process to obtain quantitative occurrence data for DFMEA. In 
[30] the authors expand the application of PBNs in industrial 
manufacturing systems by incorporating the intervention 
mechanism to guide a modeled manufacturing system away 
from possible failure modes, thus delaying eventual failure of 
the system. For a detailed description of PBNs, see [34]. 

3. PBNS FOR FDI IN MANUFACTURING SYSTEMS 

To present the proposed method, the system introduced in [29-
31] is utilized, consisting of three elements, an off-the-shelf 
ultrasonic welding station, and two off-the-shelf robotic hands, 
or “pick and place” machines will be modeled. This process has 
been taken from [29], and is reproduced here for reference. The 
welding station system is composed of a 2.5 KW power supply 
unit, an actuator housing a 3-inch air cylinder, a 20-micron 
converter, a 1:2.0 gain booster and a 20kHz, 1:1 gain horn. This 
station will join two rigid parts. The “pick and place” has 
movement in both the x and y axes, and using grip holds, places 
and removes parts to and from the welder into an assembly line. 
The pick and place loads the parts into the welding station. Once 
these parts are welded, a second pick and place will remove the 
welded parts. Figure 2 presents a finite-state machine of the 
above described welding system. 

 
Figure 2: Ultrasonic Welding Process from [28] 
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The method proposed herein adapts the FDI scheme described 
in [25], where a model is used for normal operation of the 
process and another model is used for each one of the different 
faults. PBNs self-organize into attractor states, and these states 
are related to the different failure modes that the system 
experiences. Model construction, and semantics are identical to 
[29]. Through characterization of the failure modes, the models 
can, with property verification, characterize the state of their 
relevant components to determine which component failures 
correlate to machine and/or system fault conditions. A notable 
difference from past efforts is that this system is modeled as a 
PBN of PBNs. Each of the node of the systems’ PBN is in itself 
a PBN. The PBN for the Pick and Place machines is detailed in 
[28] with its components, predictors and selection probabilities 
for each of the functions, in addition to its BN realizations, 
vector functions, attractors and the selection probabilities for 
each realization. The method is very flexible, and the design of 
the PBN and its state transitions depends on the amount of 
resolution that the experts need, based on design specifications. 
The system can grow in complexity and expression depending 
on the needs of the experts. Normal operation is modeled 
through simulation of the system’s machines, based on the 
reliability analysis performed in [28,29]. This can be modeled 
for the system as a whole, or for each of the machines that 
compose it, through simulation of their relevant components, 
based on each of the component’s Mean Time Between Failures 
(MTBF) data. Each of the system’s faults are modeled based of 
the Design Failure Mode and Effects Analysis (DFMEA) 
conducted in [29], and similarly for each of the possible faults 
for each machine. Therefore, the model is able to detect and 
isolate single machine and multiple machine faults for the 
system, and also single and multiple component faults on the 
individual machines. The Welding Station is also a 6 node PBN. 
This PBN has 14 constituent BNs. Table 1 describes the 
individual components, along with their predictor function, and 
their probability of selection. Table 2 shows each realization, 
along with its vector function and probability of selection. 

Table 1: Predictors and Selection Probability, Welding Station PBN 

Component Predictor Selection 

Prob. 𝐶௃
ሺூሻ 

𝑥ଵ, Actuator 
Cylinder 

𝑥ଵሺ𝑡 ൅ 1ሻ ൌ  𝑥ଵሺ𝑡ሻ 1 

𝑥ଶ, Power 
Supply 

𝑥ଶሺ𝑡 ൅ 1ሻ ൌ  𝑥ଶሺ𝑡ሻ 1 

𝑥ଷ, Actuator 
Converter 

𝑥ଷሺ𝑡 ൅ 1ሻ ൌ  𝑥ଷሺ𝑡ሻ & 𝑥ଶሺ𝑡ሻ  0.12 
𝑥ଷሺ𝑡 ൅ 1ሻ
ൌ  𝑥ଷሺ𝑡ሻ & 𝑥ଶሺ𝑡ሻ& 𝑥ଵሺ𝑡ሻ   

0.88 

𝑥ସ, Actuator 
Booster 

𝑥ସሺ𝑡 ൅ 1ሻ ൌ  𝑥ସሺ𝑡ሻ & 𝑥ଶሺ𝑡ሻ  0.12 
𝑥ଷሺ𝑡 ൅ 1ሻ
ൌ  𝑥ସሺ𝑡ሻ | 𝑥ଷሺ𝑡ሻ | 𝑥ଶሺ𝑡ሻ | 𝑥ଵሺ𝑡ሻ

0.88 

𝑥ହ, Actuator 
Horn 

𝑥ହሺ𝑡 ൅ 1ሻ ൌ  𝑥ହሺ𝑡ሻ & 𝑥ଶሺ𝑡ሻ 0.12 

𝑥ହሺ𝑡 ൅ 1ሻ ൌ  𝑥ହሺ𝑡ሻ | 𝑥ସሺ𝑡ሻ | 𝑥ଶሺ𝑡ሻ 0.88 

𝑥଺, Transducer 𝑥଺ሺ𝑡 ൅ 1ሻ ൌ  𝑥଺ሺ𝑡ሻ & 𝑥ଶሺ𝑡ሻ 0.12 

𝑥଺ሺ𝑡 ൅ 1ሻ ൌ  𝑥଺ሺ𝑡ሻ | 𝑥ଵሺ𝑡ሻ | 𝑥ଶሺ𝑡ሻ 0.88 

 

As an example, in the case of the second predictor of the 
Actuator’s Converter, the next state of the actuator’s converter, 
with an 88% probability will depend on the current state of the 
actuatpr/converter, the current state of the power supply, and the 
current state of the actuator cylinder. 

With this structure, it is possible to classify faults and failure 
modes per machine (through the individual machine’s PBN) 
and system faults and failure modes (through the system’s 
PBN). The authors propose the establishment of the model 
using the PRISM model checker [24], in order to validate its use 
and check its formal correctness using Probabilistic 
Computational Tree Logic (PCTL). The model is composed of 
an input module, which uses PRISM’s local non-determinism 
to provide the input to the PBNs. Three modules for each PBN 
model the machines involved in the process, and a fourth system 
PBN module modules the behavior of the whole process. An 
output module produces the system state based on the state of 
the individual modules. This way, given the different faults and 
failure modes of the individual machines (which are based on 
the possible fault conditions of their components) the model 
produces the failure modes corresponding to the system. The 
failure modes for each machine were discussed in [29], and are 
based of FMEAs conducted on each of the machines involved 
in the process. 

4. EXPERIMENTAL RESULTS 

This section details the experimental results of the tests 
performed to validate the adequacy of the proposed model. 
PRISM was employed to validate the model quantitatively and 
to produce data required for statistical tests, used to determine 
the level of correspondence. Experiments were conducted using 
three PBN models: a model for the Pick and Place robots, a 
model for the welding station, and a model representing the 
process. The models presented in [28-31] were expanded to 
include fault conditions that may lead to failure on the 
individual machines and system. This allows the prediction of 
conditions that may not cause complete failure, but rather failure 
modes that may lead to situations where the system continues 
its operation, but cannot perform the required task to 
specifications. These constitute unhealthy system states, where 
a fault condition can be treated or lead to failure. For each 
machine, and for the complete process, FMEAs were performed 
as per [29], and a determination was made of which system 
components and failure modes can produce a failure or a fault. 
As an example, the relevant nodes of the Pick and Place PBN 
are the gripper, a rotary axis, a fixed axis, a motor for the rotary 
axis, a motor for the fixed axis, and a power supply for the 
machine. On the Pick and place machines, failure of the gripper, 
fixed axis or rotary axis will cause a fault on the Pick and place 
as a whole. Failure of the motors or the power supply will cause 
a fault on the Pick and place. Three modules constitute the 
complete models in PRISM, an Input module, a module for the 
PBN, and an Output module. The current state of the PBN’s 
components is in module Input. The PBN module uses the state 
of the input variables and applies the corresponding Predictors, 
as per Section 3, to transition to the next state. Based on the 
values of these variables, and the fault conditions, the state a 
global variable is changed, giving us the current state of the 
machine. In these experiments, time is expressed in hours (h). 
Control groups were created through modeling and simulation 
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of the systems’ relevant components, with the components’ 
corresponding MTBF obtained from real technical data sheets. 
These control groups were established for the Pick and Place, 
the Welding Station, and the complete system, that involves all 
three machines. Control data was used to compare against the 
PBN models, representing expected values. Three experimental 
groups were created: PBN model of the system (all involved 
machines), PBN model of the Pick and Place robots, and PBN 
model of the Welding Station. Property verification in PRISM 
was employed for determining the maximum probability of 
occurrence of any of the failure modes that could lead to fault, 
for each of the presented models. From an initial state for each 
of the machines, such as all the possible failure modes that may 
lead to fault on the machine, a determination is made about the 
maximum probability of reaching one of the different identified 
fault conditions. Statistically significant differences between 
both the control and experimental groups (PBN models) were 
checked. Property verification in PRISM not only allows us to 
verify the models, they also allow, through experiments, to 
reach an estimate in time about when fault occurrence is certain. 
Detection: The models are able to detect faults and failures, 
based on the application of the PBN. Given the current state of 
the network genes, the PBN will select an appropriate context 
and self-organize into one of the attractor states of their 
constituent Boolean Networks. As an example, in Table 1 the 
predictors and selection probability of each predictor is given 
for the Welding Station. Table 2 illustrates the BN context, and 
the probability of each of those contexts being selected. Work 
in [29], equated the context to the different failure modes that 
can occur. The input module of the model randomizes the 

current state of the machine, and based on the current state, the 
PBN module will apply the predictors and select a BN. The 
output model contains all of the identified fault 
conditions/failure modes of a machine, and after the application 
of the predictors evaluates the state of the machine’s 
components, and makes a determination of the state of the 
machine as a whole. The machine can be in a complete failure 
condition, or in a fault condition, that can be specifically 
described based on the condition of the components, allowing 
detection and isolation of individual or combined faults. The 
first test conducted was to determine the maximum probability 
of reaching any of the failure modes leading to fault of the Pick 
and Place through verification of a Probabilistic real time 
Computational Tree Logic (PCTL) property. This property was 
tested for the Pick and place’s PBN model, and the control 
group. Two sample T-tests were performed using Minitab 16 to 
look for statistically significant differences among the group 
means. The null hypothesis states that there is no difference 
between the Control and PBN groups, or Ho: μ Control = μ 
PBN. The alternative hypothesis would be finding differences 
between the Control and PBN Model groups, or Ho: μ control  
μ PBN. For an -level of 0.05 for the test, the conclusion is that 
for the Pick and Place, there are no statistically significant 
differences between the groups (p-value > 0.05). This means 
that there is no difference between both groups. Results of the 
two-sample T test are presented in Figures 3 and 4. Figures 5 
and 6 show the results for the Welding Station, and Figures 7 
and 8 show results for the System. In these graphs, time is 
represented in hours (h). 

Table 2: Welding Station Constituent BN Vector Functions 

Realization Vector Function Probability 

1 𝑓ଵ ൌ ቀ𝑓ଵ
ሺଵሻ, 𝑓ଵ

ሺଶሻ, 𝑓ଵ
ሺଷሻ, 𝑓ଵ

ሺସሻ, 𝑓ଵ
ሺହሻ, 𝑓ଵ

ሺ଺ሻቁ 𝑢ଵ ൌ 𝑐ଵ
ሺଵሻ ∙ 𝑐ଵ

ሺଶሻ ∙ 𝑐ଵ
ሺଷሻ ∙ 𝑐ଵ

ሺସሻ ∙ 𝑐ଵ
ሺହሻ ∙ 𝑐ଵ

ሺ଺ሻ= 0.00020736 

2 𝑓ଶ ൌ ቀ𝑓ଵ
ሺଵሻ, 𝑓ଵ

ሺଶሻ, 𝑓ଵ
ሺଷሻ, 𝑓ଵ

ሺସሻ, 𝑓ଶ
ሺହሻ, 𝑓ଵ

ሺ଺ሻቁ 𝑢ଶ ൌ 𝑐ଵ
ሺଵሻ ∙ 𝑐ଵ

ሺଶሻ ∙ 𝑐ଵ
ሺଷሻ ∙ 𝑐ଵ

ሺସሻ ∙ 𝑐ଶ
ሺହሻ ∙ 𝑐ଵ

ሺ଺ሻ= 0.00152064 

3 𝑓ଷ ൌ ቀ𝑓ଵ
ሺଵሻ, 𝑓ଵ

ሺଶሻ, 𝑓ଵ
ሺଷሻ, 𝑓ଵ

ሺସሻ, 𝑓ଶ
ሺହሻ, 𝑓ଶ

ሺ଺ሻቁ 𝑢ଷ ൌ 𝑐ଵ
ሺଵሻ ∙ 𝑐ଵ

ሺଶሻ ∙ 𝑐ଵ
ሺଷሻ ∙ 𝑐ଵ

ሺସሻ ∙ 𝑐ଶ
ሺହሻ ∙ 𝑐ଶ

ሺ଺ሻ= 0.01115136 

4 𝑓ସ ൌ ቀ𝑓ଵ
ሺଵሻ, 𝑓ଵ

ሺଶሻ, 𝑓ଵ
ሺଷሻ, 𝑓ଶ

ሺସሻ, 𝑓ଵ
ሺହሻ, 𝑓ଵ

ሺ଺ሻቁ 𝑢ସ ൌ 𝑐ଵ
ሺଵሻ ∙ 𝑐ଵ

ሺଶሻ ∙ 𝑐ଵ
ሺଷሻ ∙ 𝑐ଶ

ሺସሻ ∙ 𝑐ଵ
ሺହሻ ∙ 𝑐ଵ

ሺ଺ሻ= 0.00152064 

5 𝑓ହ ൌ ቀ𝑓ଵ
ሺଵሻ, 𝑓ଵ

ሺଶሻ, 𝑓ଵ
ሺଷሻ, 𝑓ଶ

ሺସሻ, 𝑓ଵ
ሺହሻ, 𝑓ଶ

ሺ଺ሻቁ 𝑢ହ ൌ 𝑐ଵ
ሺଵሻ ∙ 𝑐ଵ

ሺଶሻ ∙ 𝑐ଵ
ሺଷሻ ∙ 𝑐ଶ

ሺସሻ ∙ 𝑐ଵ
ሺହሻ ∙ 𝑐ଶ

ሺ଺ሻ= 0.01115136 

6 𝑓଺ ൌ ቀ𝑓ଵ
ሺଵሻ, 𝑓ଵ

ሺଶሻ, 𝑓ଵ
ሺଷሻ, 𝑓ଶ

ሺସሻ, 𝑓ଶ
ሺହሻ, 𝑓ଵ

ሺ଺ሻቁ 𝑢଺ ൌ 𝑐ଵ
ሺଵሻ ∙ 𝑐ଵ

ሺଶሻ ∙ 𝑐ଵ
ሺଷሻ ∙ 𝑐ଶ

ሺସሻ ∙ 𝑐ଶ
ሺହሻ ∙ 𝑐ଵ

ሺ଺ሻ= 0.01115136 

7 𝑓଻ ൌ ቀ𝑓ଵ
ሺଵሻ, 𝑓ଵ

ሺଶሻ, 𝑓ଵ
ሺଷሻ, 𝑓ଶ

ሺସሻ, 𝑓ଶ
ሺହሻ, 𝑓ଶ

ሺ଺ሻቁ 𝑢଻ ൌ 𝑐ଵ
ሺଵሻ ∙ 𝑐ଵ

ሺଶሻ ∙ 𝑐ଵ
ሺଷሻ ∙ 𝑐ଶ

ሺସሻ ∙ 𝑐ଶ
ሺହሻ ∙ 𝑐ଶ

ሺ଺ሻ= 0.08177664 

8 𝑓 ൌ ቀ𝑓ଵ
ሺଵሻ, 𝑓ଵ

ሺଶሻ, 𝑓ଶ
ሺଷሻ, 𝑓ଵ

ሺସሻ, 𝑓ଵ
ሺହሻ, 𝑓ଵ

ሺ଺ሻቁ 𝑢଼ ൌ 𝑐ଵ
ሺଵሻ ∙ 𝑐ଵ

ሺଶሻ ∙ 𝑐ଶ
ሺଷሻ ∙ 𝑐ଵ

ሺସሻ ∙ 𝑐ଵ
ሺହሻ ∙ 𝑐ଵ

ሺ଺ሻ ൌ 0.00152064 

9 𝑓ଽ ൌ ቀ𝑓ଵ
ሺଵሻ, 𝑓ଵ

ሺଶሻ, 𝑓ଶ
ሺଷሻ, 𝑓ଵ

ሺସሻ, 𝑓ଶ
ሺହሻ, 𝑓ଵ

ሺ଺ሻቁ 𝑢ଽ ൌ 𝑐ଵ
ሺଵሻ ∙ 𝑐ଵ

ሺଶሻ ∙ 𝑐ଶ
ሺଷሻ ∙ 𝑐ଵ

ሺସሻ ∙ 𝑐ଶ
ሺହሻ ∙ 𝑐ଵ

ሺ଺ሻ= 0.01115136 

10 𝑓ଵ଴ ൌ ቀ𝑓ଵ
ሺଵሻ, 𝑓ଵ

ሺଶሻ, 𝑓ଶ
ሺଷሻ, 𝑓ଵ

ሺସሻ, 𝑓ଶ
ሺହሻ, 𝑓ଶ

ሺ଺ሻቁ 𝑢ଵ଴ ൌ 𝑐ଵ
ሺଵሻ ∙ 𝑐ଵ

ሺଶሻ ∙ 𝑐ଶ
ሺଷሻ ∙ 𝑐ଵ

ሺସሻ ∙ 𝑐ଶ
ሺହሻ ∙ 𝑐ଶ

ሺ଺ሻ= 0.08177664 

11 𝑓ଵଵ ൌ ቀ𝑓ଵ
ሺଵሻ, 𝑓ଵ

ሺଶሻ, 𝑓ଶ
ሺଷሻ, 𝑓ଶ

ሺସሻ, 𝑓ଵ
ሺହሻ, 𝑓ଵ

ሺ଺ሻቁ 𝑢ଵଵ ൌ 𝑐ଵ
ሺଵሻ ∙ 𝑐ଵ

ሺଶሻ ∙ 𝑐ଶ
ሺଷሻ ∙ 𝑐ଶ

ሺସሻ ∙ 𝑐ଵ
ሺହሻ ∙ 𝑐ଵ

ሺ଺ሻ= 0.01115136 

12 𝑓ଵଶ ൌ ቀ𝑓ଵ
ሺଵሻ, 𝑓ଵ

ሺଶሻ, 𝑓ଶ
ሺଷሻ, 𝑓ଶ

ሺସሻ, 𝑓ଵ
ሺହሻ, 𝑓ଶ

ሺ଺ሻቁ 𝑢ଵଶ ൌ 𝑐ଵ
ሺଵሻ ∙ 𝑐ଵ

ሺଶሻ ∙ 𝑐ଶ
ሺଷሻ ∙ 𝑐ଶ

ሺସሻ ∙ 𝑐ଵ
ሺହሻ ∙ 𝑐ଶ

ሺ଺ሻ= 0.08177664 

13 𝑓ଵଷ ൌ ቀ𝑓ଵ
ሺଵሻ, 𝑓ଵ

ሺଶሻ, 𝑓ଶ
ሺଷሻ, 𝑓ଶ

ሺସሻ, 𝑓ଶ
ሺହሻ, 𝑓ଵ

ሺ଺ሻቁ 𝑢ଵଷ ൌ 𝑐ଵ
ሺଵሻ ∙ 𝑐ଵ

ሺଶሻ ∙ 𝑐ଶ
ሺଷሻ ∙ 𝑐ଶ

ሺସሻ ∙ 𝑐ଶ
ሺହሻ ∙ 𝑐ଵ

ሺ଺ሻ= 0.08177664 

14 𝑓ଵସ ൌ ቀ𝑓ଵ
ሺଵሻ, 𝑓ଵ

ሺଶሻ, 𝑓ଶ
ሺଷሻ, 𝑓ଶ

ሺସሻ, 𝑓ଶ
ሺହሻ, 𝑓ଶ

ሺ଺ሻቁ 𝑢ଵସ ൌ 𝑐ଵ
ሺଵሻ ∙ 𝑐ଵ

ሺଶሻ ∙ 𝑐ଶ
ሺଷሻ ∙ 𝑐ଶ

ሺସሻ ∙ 𝑐ଶ
ሺହሻ ∙ 𝑐ଶ

ሺ଺ሻ= 0.59969536 
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Figure 3: Maximum Probability Pick and Place PBN vs Control 

 
Two-Sample T-Test and CI: Control-PP, Model-PP 
 
Two-sample T for Control-PP vs Model-PP 
N   Mean  StDev  SE Mean 
Control-PP  175  0.953  0.139    0.011 
Model-PP    175  0.923  0.178    0.013 
 
Difference = μ (Control-PP) - μ (Model-PP) 
Estimate for difference:  0.0292 
95% CI for difference:  (-0.0043, 0.0628) 
T-Test of difference = 0 (vs ≠): T-Value = 1.71  P-Value 
= 0.088  DF = 328 

Figure 4. Two-sample T Test: Pick and Place PBN vs Control Group 

 

Figure 5: Maximum Fault Occurrence Probability for the Welding 
Station PBN vs Control 

 

Figure 6: Two-sample T Test: Welding Station PBN vs Control 
Group 

 

 
Figure 7: Maximum Probability of Fault Occurrence for the System 

PBN vs Control 

 

Figure 8: Two-sample T Test: System PBN vs Control Group 

Diagnosis: Labels in PRISM can be used to single-out specific 
states, or sets of states. They can be used to single out single 
faults, or combinations of faults. When the PBN is applied and 
a constituent BN is selected, these labels provide a way of 
filtering which fault is occurring, or if the machine is operating 
correctly. Within the output module, all of the possible failure 
and fault conditions on the machine caused by the components 
that have been identified are expressed, and this allows to 
determine its future state. This allows not only to discern which 
specific fault or combination of faults is occurring, but through 
property verification we can make use of these labels to produce 
a prognosis, an estimate in time of when the fault is expected to 
occur. Knowing the probability of fault and failure occurrence 
allows the system designers to make decisions about the 
interventions needed for the system or machine and minimize 
the downtime needed for maintenance. For example, Pmax=? 
[F<=time "singleGripFault"] verifies the maximum 
probability of occurrence of single grip faults on the Pick and 
Place model. There are 63 different fault/failure conditions, and 
a normal operating state. Figure 9 shows a plot of this 
probability, and at 2579 hours a single fault of the grip can be 
expected. 

Single faults may be modeled through verification of other 
properties, such as, in the welding station’s PBN: Pmax=? [F 
<= time (powerSupply=true & actuatorCylinder=true & 
actuatorBooster=true & actuatorConverter=true & 
actuatorHorn=true & transducer=false)]. This property yields 

Two-Sample T-Test and CI: Control-Sys, Model-Sys  
 

Two-sample T for Control-Sys vs Model-Sys 
               N   Mean  StDev  SE Mean 

Control-Sys  102  0.887  0.181    0.018 
Model-Sys    102  0.927  0.173    0.017 

 
Difference = μ (Control-Sys) - μ (Model-Sys) 

Estimate for difference:  -0.0403 
95% CI for difference:  (-0.0891, 0.0086) 

T-Test of difference = 0 (vs ≠): T-Value = -1.63  P-Value 
= 0.106  DF = 201 

Two-Sample T-Test and CI: Control-WS, Model-WS 
Two-sample T for Control-WS vs Model-WS 

              N   Mean  StDev  SE Mean 
Control-WS  178  0.905  0.172    0.013 
Model-WS    178  0.888  0.188    0.014 

Difference = μ (Control-WS) - μ (Model-WS) 
Estimate for difference:  0.0162 

95% CI for difference:  (-0.0214, 0.0538) 
T-Test of difference = 0 (vs ≠): T-Value = 0.85  P-Value 

= 0.397  DF = 351 
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the maximum probability of occurrence of one of the welding 
station’s failure modes that can lead to a fault on the machine, 
caused by the transducer. In this way, individual faults are 
detected and isolated. Figure 10 illustrates this property 
verification graphically. 

 

 
Figure 9: Maximum Probability of Occurrence of Gripper Faults 

 

 
Figure 10: Welding Station Fault Condition: Transducer 

 

 
Figure 11: Simultaneous Faults of Pick and Place 1 and Pick and 

Place 2 

The system is also capable of detecting multiple simultaneous 
faults. Experiments were performed to verify the capability of 
detecting multiple faults of the system, using the System’s PBN 
model, specifically simultaneous faults detected on both Pick 
and Place machines, simultaneous faults detected on Pick and 
Place 1 and the Welding Station, and a simultaneous fault on 
Pick and place 1 and failure on Pick and Place 2. Through 
property verification, the system is able not only to detect these 
simultaneous faults, but is also able to tell when the fault is 
imminent. Figure 11 shows a simultaneous fault on Pick and 

Place 1 and Pick and Place 2, and shows that the faults will 
manifest at around 700 hours of continuous operation. Figure 11 
shows the occurrence of simultaneous faults on Pick and place 
1 and the Welding Station, where a combination of failure on 
those machines will be certain at about 500 hours of operation. 

 

 
Figure 12: Simultaneous Fault on Pick and Place 1 and the Welding 

Station 

Figure 13 shows a fault on Pick and Place 1 and a failure on 
Pick and Place 2. This condition can be expected after 1544 
hours of operation. 

 
Figure 13: Simultaneous Fault on Pick and Place 1 and Failure on 

Pick and Place 2 

Figure 14 shows the maximum probability of occurrence of a 
multiple fault, where a condition that can generate a multiple 
fault will manifest at 1679 hours of operation.With PRISM, it is 
possible to plot the states of variables in a simulation to track 
their state changes. Table 3 is an abbreviated table that presents 
some of the different states of fault, failure and operation in 
which the Pick and Place model can be. The full table of states 
has been omitted due to its length, but it consists of the different 
states that can lead to failure, faults (single and multiple) and the 
normal operation of the system. In Figure 15, diagnosis of faults 
and failures is illustrated. States of the Pick and Place have been 
labeled, and each state of the machine can be individually 
identified. This means that all faults, single or multiple, can be 
singled out (detected and isolated) specifically. Detectability 
and isolability in this model implies that the system is able to 
assess the condition of all nodes and relate this condition to a 
fault or failure as described in Table 3. By singleing out a 
particular combination of node states, the overall system state 
can be detected from Table 3. State 64 is the normal operating 
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state of the machine. After 29 hours of normal operation, the 
simulation identifies a single fault of the rotary axis. If the 
machine continues to operate without intervention, this fault 

may develop into a failure. The initial state of the system is 
presumed to be the normal operating state. 

Table 3: States of the Pick and Place PBN 

Machine 
state 

Description Machine 
state

Description 

1 failure due to gripper, motor1a, motor1b, 
fixed axis, rotary axis, and power 

33 failure due to motor1a, motor1b, fixed axis, rotary axis, and power  

8 failure due to gripper, motor1a, and 
motor1b  

40 failure due to motor1a, and motor1b  

9 failure due to gripper, motor1a, fixed axis, 
rotary axis, and power  

41 failure due to motor1a, fixed axis, rotary axis, and power  

15 failure due to gripper, motor1a, and power 47 failure due to motor1a, and power  
16 failure due to gripper, motor1a, and 

motor1b  
48 failure due to motor1a, and motor1b  

24 failure due to gripper and motor1b  56 failure due to motor1b 
25 failure due to gripper, fixed axis, rotary 

axis, and power  
57 multiple fault due to fixed axis, rotary axis, and power  

28 failure due to gripper, and fixed axis  60 single fault due to fixed axis 
29 failure due to gripper, rotary axis, and 

power  
61 failure due to rotary axis, and power  

30 failure due to gripper, and rotary axis  62 single due to rotary axis 
31 failure due to gripper, and power  63 failure due to power 
32 single fault due to gripper  64 normal operation

 
 
Figure 16 shows another simulation of 80 hours of continuous 
operation, where after 48 hours of normal operation, the system 
detects and diagnoses a failure of motor1a at 49 hours, and a 
fault of the fixed axis at 69 hours. 

 
Figure 14: Maximum Probability of Occurrence of Multiple Faults 

 

 
Figure 15: Fault Detection and Diagnosis using the Pick and Place’s 

PBN Model 

Figure 16: Detection and Diagnosis of Two Faults 

5. CONCLUSIONS 

This paper presents a bioinspired, complex-adaptive modeling 
methodology that allows modeling single and multiple faults on 
manufacturing systems using Probabilistic Boolean Networks. 
The modifications proposed in this paper to the aforementioned 
architecture and to this new method allowed the classification 
of single and multiple failures. These permit the scheme 
proposed in [25], and shown in Figure 1, the detection and 
isolation of single and multiple faults, along with an estimate of 
when these faults will present themselves. Statistical tests 
performed of this data validate the proposed approach for future 
use and further development. Since these models are based on 
the definition of the PBNs derived from regulating genes/nodes, 
this discretization creates a limitation in terms of the possible 
states that it can represent, but greatly simplifies the analysis. 
The authors are currently working on new models that may 
allow new faults to be detected, for further analysis. For future 
research, an interesting idea is to design a fault diagnosis system 
based in historical data of the process with the ability to detect 
and classify multiple and novel faults. Expanding the use of 
non-binary quantized PBNs will also allow in the future a richer 

31

Octava Conferencia Nacional de Computación, Informática y Sistemas / CoNCISa 2020 / ISBN: 978-980-7683-06-7 
Universidad Central de Venezuela, Caracas, Venezuela - 11 al 13 de noviembre de 2020



 
 
 

mechanism of expressing fault conditions and failure modes. 
Another possible avenue of development is the use of the 
intervention mechanism in FDI-enabled PBN models. 
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